8,989 research outputs found

    Modulated phases in magnetic models frustrated by long-range interactions

    Full text link
    We study an Ising model in one dimension with short range ferromagnetic and long range (power law) antiferromagnetic interactions. We show that the zero temperature phase diagram in a (longitudinal) field H involves a sequence of up and down domains whose size varies continuously with H, between -H_c and H_c which represent the edge of the ferromagnetic up and down phases. The implications of long range interaction in many body systems are discussed.Comment: 5 pages, 3 figure

    Modulus, strength and thermal exposure studies of FP-Al2O3/aluminum and FP-Al2O3/magnesium composites

    Get PDF
    The mechanical properties of FP-Al2O3 fiber reinforced composites prepared by liquid infiltration techniques are improved. A strengthening addition, magnesium, was incorporated with the aluminum-lithium matrix alloy usually selected for these composites because of its good wetting characteristics. This ternary composite, FP-Al2O3/Al-(2-3)Li-(3-5)Mg, showed improved transverse strength compared with FP-Al2O3/Al-(2-3)Li composites. The lower axial strengths found for the FP-Al2O3/Al-(2-3)Li-(3-5)Mg composites were attributed to fabrication related defects. Another technique was the use of Ti/B coated FP-Al2O3 fibers in the composites. This coating is readily wet by molten aluminum and permitted the use of more conventional aluminum alloys in the composites. However, the anticipated improvements in the axial and transverse strengths were not obtained due to poor bonding between the fiber coating and the matrix. A third approach studied to improve the strengths of FP-Al2O3 reinforced composites was the use of magnesium alloys as matrix materials. While these alloys wet fibers satisfactorily, the result indicated that the magnesium alloy composites used offered no axial strength or modulus advantage over FP-Al2O3/Al-(2-3)Li composites

    Mechanical properties of SiC fiber-reinforced reaction-bonded Si3N4 composites

    Get PDF
    The room temperature mechanical and physical properties of silicon carbide fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) have been evaluated. The composites contained 23 and 40 volume fraction of aligned 140 micro m diameter chemically vapor deposited SiC fibers. Preliminary results for composite tensile and bend strengths and fracture strain indicate that the composites displayed excellent properties when compared with unreinforced RBSN of comparable porosity. Fiber volume fraction showed little influence on matrix first cracking strain but did influence the stressed required for matrix first cracking and for ultimate composite fracture strength. It is suggested that by reducing matrix porosity and by increasing the volume fraction of the large diameter SiC fiber, it should be possible to further improve the composite stress at which the matrix first cracks

    Quantum Entanglement as a Diagnostic of Phase Transitions in Disordered Fractional Quantum Hall Liquids

    Get PDF
    We investigate the disorder-driven phase transition from a fractional quantum Hall state to an Anderson insulator using quantum entanglement methods. We find that the transition is signaled by a sharp increase in the sensitivity of a suitably averaged entanglement entropy with respect to disorder -- the magnitude of its disorder derivative appears to diverge in the thermodynamic limit. We also study the level statistics of the entanglement spectrum as a function of disorder. However, unlike the dramatic phase-transition signal in the entanglement entropy derivative, we find a gradual reduction of level repulsion only deep in the Anderson insulating phase.Comment: 8 pages, 8 figures, including the supplemental material, published in PRL as an Editors' Suggestio

    Monte Carlo Simulations of Doped, Diluted Magnetic Semiconductors - a System with Two Length Scales

    Full text link
    We describe a Monte Carlo simulation study of the magnetic phase diagram of diluted magnetic semiconductors doped with shallow impurities in the low concentration regime. We show that because of a wide distribution of interaction strengths, the system exhibits strong quantum effects in the magnetically ordered phase. A discrete spin model, found to closely approximate the quantum system, shows long relaxation times, and the need for specialized cluster algorithms for updating spin configurations. Results for a representative system are presented.Comment: 12 pages, latex, 7 figures; submitted to International Journal of Modern Physics C, Proceedings of the U.S.-Japan Bilateral Seminar: Understanding and Conquering Long Time Scales in Computer Simulation
    • …
    corecore